Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptomic responses of the softwood-degrading white-rot fungus Phanerochaete carnosa during growth on coniferous and deciduous wood.

Identifieur interne : 000479 ( Main/Exploration ); précédent : 000478; suivant : 000480

Transcriptomic responses of the softwood-degrading white-rot fungus Phanerochaete carnosa during growth on coniferous and deciduous wood.

Auteurs : Jacqueline Macdonald [Canada] ; Matt Doering ; Thomas Canam ; Yunchen Gong ; David S. Guttman ; Malcolm M. Campbell ; Emma R. Master

Source :

RBID : pubmed:21441342

Descripteurs français

English descriptors

Abstract

To identify enzymes that could be developed to reduce the recalcitrance of softwood resources, the transcriptomes of the softwood-degrading white-rot fungus Phanerochaete carnosa were evaluated after growth on lodgepole pine, white spruce, balsam fir, and sugar maple and compared to the transcriptome of P. carnosa after growth on liquid nutrient medium. One hundred fifty-two million paired-end reads were obtained, and 63% of these reads were mapped to 10,257 gene models from P. carnosa. Five-hundred thirty-three of these genes had transcripts that were at least four times more abundant during growth on at least one wood medium than on nutrient medium. The 30 transcripts that were on average over 100 times more abundant during growth on wood than on nutrient medium included 6 manganese peroxidases, 5 cellulases, 2 hemicellulases, a lignin peroxidase, glyoxal oxidase, and a P450 monooxygenase. Notably, among the genes encoding putative cellulases, one encoding a glycosyl hydrolase family 61 protein had the highest relative transcript abundance during growth on wood. Overall, transcripts predicted to encode lignin-degrading activities were more abundant than those predicted to encode carbohydrate-active enzymes. Transcripts predicted to encode three MnPs represented the most highly abundant transcripts in wood-grown cultivations compared to nutrient medium cultivations. Gene set enrichment analyses did not distinguish transcriptomes resulting from softwood and hardwood cultivations, suggesting that similar sets of enzyme activities are elicited by P. carnosa grown on different wood substrates, albeit to different expression levels.

DOI: 10.1128/AEM.02490-10
PubMed: 21441342
PubMed Central: PMC3126436


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptomic responses of the softwood-degrading white-rot fungus Phanerochaete carnosa during growth on coniferous and deciduous wood.</title>
<author>
<name sortKey="Macdonald, Jacqueline" sort="Macdonald, Jacqueline" uniqKey="Macdonald J" first="Jacqueline" last="Macdonald">Jacqueline Macdonald</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S3E5, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S3E5</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Doering, Matt" sort="Doering, Matt" uniqKey="Doering M" first="Matt" last="Doering">Matt Doering</name>
</author>
<author>
<name sortKey="Canam, Thomas" sort="Canam, Thomas" uniqKey="Canam T" first="Thomas" last="Canam">Thomas Canam</name>
</author>
<author>
<name sortKey="Gong, Yunchen" sort="Gong, Yunchen" uniqKey="Gong Y" first="Yunchen" last="Gong">Yunchen Gong</name>
</author>
<author>
<name sortKey="Guttman, David S" sort="Guttman, David S" uniqKey="Guttman D" first="David S" last="Guttman">David S. Guttman</name>
</author>
<author>
<name sortKey="Campbell, Malcolm M" sort="Campbell, Malcolm M" uniqKey="Campbell M" first="Malcolm M" last="Campbell">Malcolm M. Campbell</name>
</author>
<author>
<name sortKey="Master, Emma R" sort="Master, Emma R" uniqKey="Master E" first="Emma R" last="Master">Emma R. Master</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21441342</idno>
<idno type="pmid">21441342</idno>
<idno type="doi">10.1128/AEM.02490-10</idno>
<idno type="pmc">PMC3126436</idno>
<idno type="wicri:Area/Main/Corpus">000502</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000502</idno>
<idno type="wicri:Area/Main/Curation">000502</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000502</idno>
<idno type="wicri:Area/Main/Exploration">000502</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptomic responses of the softwood-degrading white-rot fungus Phanerochaete carnosa during growth on coniferous and deciduous wood.</title>
<author>
<name sortKey="Macdonald, Jacqueline" sort="Macdonald, Jacqueline" uniqKey="Macdonald J" first="Jacqueline" last="Macdonald">Jacqueline Macdonald</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S3E5, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S3E5</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Doering, Matt" sort="Doering, Matt" uniqKey="Doering M" first="Matt" last="Doering">Matt Doering</name>
</author>
<author>
<name sortKey="Canam, Thomas" sort="Canam, Thomas" uniqKey="Canam T" first="Thomas" last="Canam">Thomas Canam</name>
</author>
<author>
<name sortKey="Gong, Yunchen" sort="Gong, Yunchen" uniqKey="Gong Y" first="Yunchen" last="Gong">Yunchen Gong</name>
</author>
<author>
<name sortKey="Guttman, David S" sort="Guttman, David S" uniqKey="Guttman D" first="David S" last="Guttman">David S. Guttman</name>
</author>
<author>
<name sortKey="Campbell, Malcolm M" sort="Campbell, Malcolm M" uniqKey="Campbell M" first="Malcolm M" last="Campbell">Malcolm M. Campbell</name>
</author>
<author>
<name sortKey="Master, Emma R" sort="Master, Emma R" uniqKey="Master E" first="Emma R" last="Master">Emma R. Master</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abies (microbiology)</term>
<term>Acer (microbiology)</term>
<term>Enzymes (biosynthesis)</term>
<term>Enzymes (genetics)</term>
<term>Fungal Proteins (biosynthesis)</term>
<term>Fungal Proteins (genetics)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Phanerochaete (genetics)</term>
<term>Phanerochaete (growth & development)</term>
<term>Picea (microbiology)</term>
<term>Pinus (microbiology)</term>
<term>Wood (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Abies (microbiologie)</term>
<term>Acer (microbiologie)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Bois (microbiologie)</term>
<term>Enzymes (biosynthèse)</term>
<term>Enzymes (génétique)</term>
<term>Phanerochaete (croissance et développement)</term>
<term>Phanerochaete (génétique)</term>
<term>Picea (microbiologie)</term>
<term>Pinus (microbiologie)</term>
<term>Protéines fongiques (biosynthèse)</term>
<term>Protéines fongiques (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Enzymes</term>
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Enzymes</term>
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Enzymes</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Enzymes</term>
<term>Phanerochaete</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Abies</term>
<term>Acer</term>
<term>Bois</term>
<term>Picea</term>
<term>Pinus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Abies</term>
<term>Acer</term>
<term>Picea</term>
<term>Pinus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To identify enzymes that could be developed to reduce the recalcitrance of softwood resources, the transcriptomes of the softwood-degrading white-rot fungus Phanerochaete carnosa were evaluated after growth on lodgepole pine, white spruce, balsam fir, and sugar maple and compared to the transcriptome of P. carnosa after growth on liquid nutrient medium. One hundred fifty-two million paired-end reads were obtained, and 63% of these reads were mapped to 10,257 gene models from P. carnosa. Five-hundred thirty-three of these genes had transcripts that were at least four times more abundant during growth on at least one wood medium than on nutrient medium. The 30 transcripts that were on average over 100 times more abundant during growth on wood than on nutrient medium included 6 manganese peroxidases, 5 cellulases, 2 hemicellulases, a lignin peroxidase, glyoxal oxidase, and a P450 monooxygenase. Notably, among the genes encoding putative cellulases, one encoding a glycosyl hydrolase family 61 protein had the highest relative transcript abundance during growth on wood. Overall, transcripts predicted to encode lignin-degrading activities were more abundant than those predicted to encode carbohydrate-active enzymes. Transcripts predicted to encode three MnPs represented the most highly abundant transcripts in wood-grown cultivations compared to nutrient medium cultivations. Gene set enrichment analyses did not distinguish transcriptomes resulting from softwood and hardwood cultivations, suggesting that similar sets of enzyme activities are elicited by P. carnosa grown on different wood substrates, albeit to different expression levels.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21441342</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>08</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>77</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2011</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptomic responses of the softwood-degrading white-rot fungus Phanerochaete carnosa during growth on coniferous and deciduous wood.</ArticleTitle>
<Pagination>
<MedlinePgn>3211-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.02490-10</ELocationID>
<Abstract>
<AbstractText>To identify enzymes that could be developed to reduce the recalcitrance of softwood resources, the transcriptomes of the softwood-degrading white-rot fungus Phanerochaete carnosa were evaluated after growth on lodgepole pine, white spruce, balsam fir, and sugar maple and compared to the transcriptome of P. carnosa after growth on liquid nutrient medium. One hundred fifty-two million paired-end reads were obtained, and 63% of these reads were mapped to 10,257 gene models from P. carnosa. Five-hundred thirty-three of these genes had transcripts that were at least four times more abundant during growth on at least one wood medium than on nutrient medium. The 30 transcripts that were on average over 100 times more abundant during growth on wood than on nutrient medium included 6 manganese peroxidases, 5 cellulases, 2 hemicellulases, a lignin peroxidase, glyoxal oxidase, and a P450 monooxygenase. Notably, among the genes encoding putative cellulases, one encoding a glycosyl hydrolase family 61 protein had the highest relative transcript abundance during growth on wood. Overall, transcripts predicted to encode lignin-degrading activities were more abundant than those predicted to encode carbohydrate-active enzymes. Transcripts predicted to encode three MnPs represented the most highly abundant transcripts in wood-grown cultivations compared to nutrient medium cultivations. Gene set enrichment analyses did not distinguish transcriptomes resulting from softwood and hardwood cultivations, suggesting that similar sets of enzyme activities are elicited by P. carnosa grown on different wood substrates, albeit to different expression levels.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>MacDonald</LastName>
<ForeName>Jacqueline</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S3E5, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Doering</LastName>
<ForeName>Matt</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Canam</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gong</LastName>
<ForeName>Yunchen</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guttman</LastName>
<ForeName>David S</ForeName>
<Initials>DS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Campbell</LastName>
<ForeName>Malcolm M</ForeName>
<Initials>MM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Master</LastName>
<ForeName>Emma R</ForeName>
<Initials>ER</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>03</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004798">Enzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D028202" MajorTopicYN="N">Abies</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031002" MajorTopicYN="N">Acer</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004798" MajorTopicYN="N">Enzymes</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028222" MajorTopicYN="N">Picea</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028223" MajorTopicYN="N">Pinus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21441342</ArticleId>
<ArticleId IdType="pii">AEM.02490-10</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.02490-10</ArticleId>
<ArticleId IdType="pmc">PMC3126436</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Jun;67(6):2705-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11375184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Jun;76(11):3599-610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20400566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2001 Apr;50(2):215-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12116929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2002 Sep;59(6):618-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Aug 12;19(12):1572-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12912839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2004 Apr;117(1):1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15126700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jun;22(6):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 1992 Feb;20(1):46-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1633970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Oct;62(10):3697-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8837425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2005;6:92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15955240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16199517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2005 Dec;274(5):454-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16231151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2006 Feb;69(6):627-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16331454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2006 May;43(5):343-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16524749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jul;72(7):4871-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2006;7 Suppl 1:S11.1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16925833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Jan;18(1):188-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18025269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2008 Mar;66(3):243-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18292958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):349-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18359268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2008 Jul;10(7):1844-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2009 Jan;10(1):57-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19015660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1954-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19193860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2009 Jun;55(3):273-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19396602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Jun;75(12):4058-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19376920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2009;5:275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19536198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2009 Oct;299(2):159-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19709307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Jul;101(13):4992-5002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19969450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Apr 20;49(15):3305-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20230050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2010 May;86(6):1903-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20306191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:263-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Dec 14;294(5550):2310-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743192</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Ontario</li>
</region>
<settlement>
<li>Toronto</li>
</settlement>
<orgName>
<li>Université de Toronto</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Campbell, Malcolm M" sort="Campbell, Malcolm M" uniqKey="Campbell M" first="Malcolm M" last="Campbell">Malcolm M. Campbell</name>
<name sortKey="Canam, Thomas" sort="Canam, Thomas" uniqKey="Canam T" first="Thomas" last="Canam">Thomas Canam</name>
<name sortKey="Doering, Matt" sort="Doering, Matt" uniqKey="Doering M" first="Matt" last="Doering">Matt Doering</name>
<name sortKey="Gong, Yunchen" sort="Gong, Yunchen" uniqKey="Gong Y" first="Yunchen" last="Gong">Yunchen Gong</name>
<name sortKey="Guttman, David S" sort="Guttman, David S" uniqKey="Guttman D" first="David S" last="Guttman">David S. Guttman</name>
<name sortKey="Master, Emma R" sort="Master, Emma R" uniqKey="Master E" first="Emma R" last="Master">Emma R. Master</name>
</noCountry>
<country name="Canada">
<region name="Ontario">
<name sortKey="Macdonald, Jacqueline" sort="Macdonald, Jacqueline" uniqKey="Macdonald J" first="Jacqueline" last="Macdonald">Jacqueline Macdonald</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000479 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000479 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21441342
   |texte=   Transcriptomic responses of the softwood-degrading white-rot fungus Phanerochaete carnosa during growth on coniferous and deciduous wood.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21441342" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020